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The propagation of a train of short, small-amplitude, internal waves through a long, 
finite-amplitude, two-dimensional, internal wave is studied. An exact solution of the 
equations of motion for a Boussinesq fluid of constant density gradient is used to 
describe the long wave, and its distortion of the density gradient as well as its 
velocity field are accounted for in determining the propagation characteristics of the 
short waves. To illustrate the magnitude of the effects on the short waves, particular 
numerical solutions are found for short waves generated by an idealized flow induced 
by a long wave adjacent to sloping, sinusoidal topography in the ocean, and the 
results are compared with a laboratory experiment. The theory predicts that  the long 
wave produces considerably distortion of the short waves, changing their amplitudes, 
wavenumbers and propagation directions by large factors, and in a way which is 
generally consistent with, but not fully tested by, the observations. It is suggested 
that short internal waves generated by the interaction of relatively long waves with 
a rough sloping topography may contribute to the mixing observed near continental 
slopes. 

1. Introduction 
The distortion of short waves by those of larger scale has important consequences 

in the ocean. Short surface waves riding on longer waves can be severely modulated, 
leading to changes which may effect radar backscatter. Our purpose here is to 
investigate the modulation of short internal waves in a background dominated by a 
single long-wave component since this, for reasons which we shall later explain ($3), 
may have an important bearing on diapycnal mixing near ocean boundaries. The 
study parallels that of Longuet-Higgins (1987 ; see also Henyey et al. 1988) for the 
propagation of short waves on long surface gravity waves, with the advantage that 
we shall here begin with an exact solution for the long wave. The analysis is also 
similar to that of Broutman (1984, 1986), Broutman & Young (1986), and Broutman 
& Grimshaw (1988), who selected as the long wave an inertial wave or wave packet 
which, whilst producing a variable shear flow, induces no change in the density field 
through which the short waves are propagating. The analysis derived here may be 
seen as supplementing studies such as those of Muller & Karlsson (1981) in which 
short waves contribute to the instability of long waves, and more particularly, in its 
application to boundary mixing, to  those of Baines (1971 a,  b)  and Mied & Dugan 
(1976) who considered the reflexion of internal waves from rough topography. 
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2. Analysis 
2.1. The long wave 

An exact, two-dimensional internal wave solution to the equations of motion in a 
uniformly stratified (constant buoyancy frequency, No), non-diffusive, inviscid, 
Boussinesq fluid is 

where the velocity 

A Z  $=-  sin8, 

v = A x s i n  0, L 

is U = (a$/&, v, - a$/ax) and the density is 

9 

Here g is the acceleration due to gravity, L , M  are the horizontal and vertical 
wavenumbers of the internal wave of amplitude A and frequency Z, 8 = Lx +Mz - Zt, 
and f is the Coriolis parameter. The dispersion relation is 

The isopycnal displacements ~ ( x ,  x o ,  t )  are found by solving p = constant on z = 

20 + 7 ( x ,  20,  t )  ; 
7 = A sin (Lx +M(zo + 7) - Zt). ( 5 )  

The lines of constant phase in the (x, 2)-plane are given by x sin a + z cos a = constant, 
where L = K sin a and M = K cos a, and since (a$/az) sin a + @$/ax) cos a = 0, they 
are parallel to the particle motion. If we take new axes X and Z in the direction of 
the wave phase velocity and parallel to  the wave crests respectively, then the motion 
is in the 2-direction, with particle speed (-ACsina) cos (KX-Zt )  (see figure 1). The 
group velocity in the (x, 2)-plane is 

(N'-f 2, (cos a, 0, -sin a), 
ZK3 

c, = 

and is a t  right angles to the phase speed vector c = (C /K)  (sin a, 0, cos a), but parallel 
to the particle motion. 

The slope of isopycnal surfaces is given by 

where + = AM cos 8, becoming vertical in part of the wave when AM = r 3 1. The 
local buoyancy frequency N, is given by N,2 = Ni(1-+) and an equivalent parameter 
relation for horizontal gradients, N,, where N i  = - (g /po)  ap/ax, is given by 

NE = -Ni + tan a. 

The minimum Richardson number, J = N,2/(curl q2, is 

c o s 2 a / ~ 2 ~ 1 - ~ 1 - r 2 ~ 1 + h ~ ~ ~ ~ ~  if (i+h) < i/r, 

or cos2 a( 1 - r ) / (hr2 )  if (1 + A )  > 1 / r ,  

where h = (fcot a/No)2. 
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FIGURE 1 .  The notation used for long internal wave. The curves show surfaces 
of constant density. 

The stability of the wave with f = 0 has been examined by Mied (1976), Drazin 
(1977) and Klostermeyer (1982) using Floquet theory. It is parametrically unstable 
even a t  small amplitude and so may be expected to break down a t  some distance 
from its generation site. Locally however (and we have in mind the region of ocean 
near the continental slope), it may provide a close approximation to the fluid at  some 
(large) scale and we may usefully consider the propagation of relatively short and 
small-amplitude internal waves in the density and velocity field described by (1)-(3). 

2.2. The short waves 
The vertical acceleration produced by the long wave, a2$/axat, is AC2sinB and for 
oceanic internal waves, even with A - 100 m and C < No - low2 s-l this is very much 
less than g. In  the examination of the short-wave modulation the effects of vertical 
acceleration are therefore neglected, in contrast to the comparable study of surface 
waves where they are paramount. We must, however, account for the long-wave- 
induced variation in the density field (3) through which the short waves are 
propagating. For values of r near unity this variation is substantial. 

The short waves are supposed to be of such small amplitude as to be linear, and 
of such small length that a t  any instant they effectively propagate within a uniform 
environment produced by the long wave. Provided that J is sufficiently large (it must 
be >a), the local effects of the shear produced by the long waves may be neglected 
(Bretherton 1966; Bretherton & Garrett 1968; Booker & Bretherton 1967) and we 
need only account for the local density field. We consider therefore the propagation 
of waves in a uniformly stratified medium but having both horizontal and vertical 
variation in density pl ,  such that N i  = - ( g / p o )  (ap,/az) and N,2 = - (g /po)  (apJax) are 
constant. 

The equations of motion may be solved to give a dispersion relation for the 
intrinsic wave frequency u as a function of wavenumber (1,0, n) ; 

N,2 l2 - N i  In + f 2n2 
(Z2  + n2) 

g 2  = 

For simplicity we have chosen here to consider waves in the (x,z)-plane and to 
disregard those having a y-wavenumber (see the Appendix). As before, the phase and 
group velocities of these waves are a t  right angles, but the waves may be ‘locally 
unstable ’ if u2 < 0. Writing I = k sin B, n = k cos p we have 

u2 = N,2sin2P-Nisinpcosp+f2cos2P. (9) 
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It may be shown algebraically that a' is bounded between the two values 

~ N , 2 + f 2 + [ ( N Z 2 - - f 2 ) 2 + N ~ ] ~ } .  

The minimum value of a' at  p = ( t )  tan-' [Ni/(N,2 - f ' ) ]  is negative if N: > 4f 2N,2, or, 
using the expressions for N,  and N, in terms of $ (see §2.1), when # 2  > 4 4  1 -$). A 
necessary condition for instability is thus 

r2 > 4A(l--r). (10) 

Physically the instability corresponds to a disturbance along a direction between 
the horizontal and that of the mean long-wave isopycnals, which slope a t  an angle 
tan-' (N:/N,2). It carries denser fluid downwards and light fluid upwards, thus locally 
reducing the potential energy. Rotation (larger A )  tends to  stabilize the instability. 

The energy of the waves can be estimated by taking the scalar product of the 
velocity components (u, v, w) and a density perturbation term with their respective 
equations of motion and conservation of density in the usual way (see for example 
Gill 1982, section 6.7), and adding to give 

The terms in the square bracket represent the rate a t  which work is done by the 
pressure, p.  Using the linear solution for 

u = u0cos(Zx+nz-at) 

and for the density perturbation 

P = ( U O / W  (W - ( P o l d  
to provide an expression for pu we find, correct to second order, 

The energy density of the waves, E ,  is now given by the expression within the curly 
brackets, and this can be evaluated using the linear solution of the equations of 
motion to give a second-order expression 

po a2u2Ni 
2(N,2sinP--Nz C O S ~ ) ~ '  

E =  

where a is the amplitude of the short waves. (Except for the term in N,, this has 
precisely the same form as that given by Gill (1982, equation (8.6.5)).) The ratio of 
kinetic to potential energy is unchanged from that given by Gill in his equation 
(8.6.6). 

The component of group velocity in the direction of phase propagation of the long 
waves, parallel to the X-axis, is 

aa a r  
cgx = -sina+-cosa, az an 

which, after some algebra, becomes 

sin (a - p) 
2 c k  

[ (N," - j 2 )  sin 2p - N: cos 2p] cgx = 
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Three conservation equations are formulated to describe the propagation of the 
short waves. We assume first that there is uniformity in the Z-direction parallel to 
the long-wave crests, recalling also that the long-wave particle speed is independent 
of 2. The component of wavenumber parallel to the crests of the long waves is 

(15) 
therefore conserved ; 

Secondly wave phase is conserved, so that the absolute frequency of the short waves 
is constant in a frame of reference moving with the long waves. Recalling that the 
long waves move a t  speed Z l K  in direction X and that the particle motions are at 
right angles with speed (-ACsin a) cos KX in the Z-direction, in the frame of 
reference moving with the long waves we have 

1 cos a - n sin a = c l ,  constant. 

AZ 
sin a 

a- (C /K)  ( 1  sin a + n cosa) + (n sin a- 1 cos a)  - cosKX = c2, constant. (16) 

The third equation describes conservation of wave action, E / a  (Garrett 1967). In 
the steady flow relative to a frame of reference moving with the long wave, the wave 
action does not change in time, so that, recalling uniformity in the Z-direction, 

& ( $ - C g x ) -  E = 0, 
a 

and so the wave-action flux is constant : 

($-cg$ = c,, constant, 

The equations are non-dimensionalized by taking 

y = k / K ,  s = a/Z. (19) 

The constants c l ,  c,  and c,  are found by specifying y, s, /I and a at some reference 
position ofX (yo, so,/Io and a, say) when 4, = AMcosKX,  = 4,. The equations become 

wavenumber : ysin(/I-a) = C,; (20) 

= c,; 4 Y  sin (P-., phase conservation : s - y cos (/I- a) + 
sin u COB a 

wave-action flux : 

(sin (/I-a) [( 1 - $ - A  tan2 a) sin 2/3+ # tan a cos 2/31 + 2ay( 1 + A )  sin2 a )  
4y( 1 + A )  sin a [( 1 - 4) sin/I+ 4 tan a cos 2/I]* 

X = G,, ( 2 2 )  

with the dispersion relation : 

(23) 

where C,, C, and C, correspond to c l ,  c ,  and c3 in the non-dimensional equations. We 
may eliminate y by substituting from (20) into (21) to give 

- {sinP[( 1 - 4) sin /I+ r$ tan a cosp] + h tan2 a cos2PP) 
s -  

(1+A)sin2a 

sin a cos a (24) 
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and using this to eliminate s in (23), we have a quadratic equation for $ which has 
two roots, each a function of p. Numerical solutions may now be generated by 
choosing ~9, solving the quadratic for $, and then using (20) and (21) to find y and s 
respectively. Roots with > r ,  y < 0 or s < 0 are discarded as being unrealistic. 
(We require k, K ,  and ,Z to be greater than zero.) Equation (22) now gives values 
of (a/a$ which are > O  provided that (C/K-c,,) does not change sign between 
reference position and the position a t  which the solution is to  be found. Changes in 
sign occur a t  positions where the short waves are unable to propagate through the 
long wave. These correspond to the caustics discussed and analysed by Broutman 
(1986). (To the approximation considered here, the wave amplitude increases 
indefinitely as the caustics are approached. Broutman has described a local solution 
which avoids the singularity.) 

We might illustrate the solutions by arbitrarily specifying conditions at  the 
reference position. Having in mind a specific application, we have instead chosen to 
seek solutions that apply to short waves generated by the long-wave flow over 
topography. Whilst we express some reservations about the validity of this 
approach, the procedure does a t  least provide some illustrations in $ 4  which 
demonstrate the large effects which long waves may have on short waves. 

3. Application 
3.1. Boundary mixing in the ocean 

It was suggested by Munk (1966), and later by Armi (1979), that  mixing on ocean 
boundaries might be important in supporting the net diapycnal diffusion in deep 
water within ocean basins. The principal mechanism of mixing is, however, 
unknown. Whilst there exist mechanisms that may lead to the occurrence of unstable 
stratification in a viscous Ekman-type boundary layer driven by flow near a slope 
(see Weatherley & Martin 1978; Thorpe 1987b), there are also inviscid modes of 
instability associated with internal waves which might lead to turbulent diffusion. 
Eriksen (1982, 1985) has pointed to the possible importance of internal wave 
breaking on slopes with an inclination to the horizontal, 6, which matches that of the 
characteristic propagation direction of the waves ; that  is a t  ‘critical ’ frequencies, re, 
where 

gE = N i  sin2 6 + f cos2 6. 

Cacchione & Wunsch (1974) observed instability near slopes for waves having this 
frequency in laboratory experiments and, in recent further experiments, G. N. Ivey 
(private communication) has found that turbulence sets in at sufficiently high 
Reynolds numbers. Thorpe (1987 a )  has shown that wave breaking might also occur 
a t  slopes other than the critical when the incident wave interacts resonantly with its 
phase-locked reflected wave. The estimated dissipation rates in the ocean appear 
sufficient to contribute a significant fraction of that  across whole ocean basins 
(Garrett & Gilbert 1988). 

Observations near 3300 m depth on the west slope of the Porcupine Bank south- 
west of Eire (Thorpe 1987 b)  show the presence of motions dominated by fluctuations 
at the period of the semi-diurnal, of M,, tide with a strong baroclinic component 
which severely modulates the local density gradient. The wave appears to propagate 
in a plane roughly normal to the contours of the slope. The amplitude of the 
fluctuations reaches 60 m and the vertical density gradient measured over 100 m 
scales varies by factors of order 8 : 1 ,  relatively weak gradients being found when the 
current is up-slope. The vertical wavelength of the waves is about 1000 m. The local 
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slope of the seabed in the area is about 3", rather less than that of the wave 
characteristics (about So) and, whilst ' critical ' conditions or those for resonant 
interactions are approached, they are not matched precisely (Thorpe 1988). 
Nevertheless the amplitude of the reflected wave, which in a linear inviscid model 
would increase indefinitely as critical conditions are approached, appears to  greatly 
exceed that of the incident wave (as, for example, in the experiments of Thorpe & 
Haines 1987), and the motion is primarily determined by the reflected component. 

Measurements in the lower 130 m of the water column made to a resolution of 
0.1 mK at 20 s sampling rate (well below the mean local buoyancy period of about 
2 hours) show a highly variable temperature structure within the M, oscillation. 
During the last 3 hours of rising isotherms (up-slope current), high-frequency 
oscillations have an amplitude of 10-12 m, whilst during the period of falling 
isotherms the corresponding amplitude is about 1 m (Thorpe 1987 b, figure 22). 
Coherent 'layers' in the bottom 80 m with temperature gradients some 3-10 times 
greater than average have a vertical separation of 2-50 m, and show a notable 
downward trend as the isotherms rise (Thorpe 1987b, figure 23). Between these stable 
layers are observed statically unstable regions in which the potential density 
decreases with depth over scales of 10-20 m for short periods. An estimate of the 
rates of production of turbulent kinetic energy show t'hat turbulence resulting from 
the observed 'inversions' may be comparable with, or even greater than, that 
produced by the shear stress on the seabed. 

The observations reveal a situation in which significant mixing is being produced 
by large baroclinic motions. The downward-propagating layers suggest the presence 
of internal waves with downward phase speed and thus having an associated upward 
propagation of wave energy (Lazier 1973), and hence to a source of the waves on the 
seabed, although as we shall see later this interpretation may be too simplistic. There 
are at least two possible explanations for the absence of these waves. They may be 
bottom reflected, and enhanced, components of waves propagating downwards from 
the 'spectrum' of waves existing in the overlaying ocean. Alternatively, they may 
result from the local topographic generation of small-scale waves (i.e. 20-50 m 
vertical wavelength) by the large-scale, M,, 1000 m vertical wavelength, baroclinic 
wave (see Bell 1975), which subsequently so distorts the short waves as to induce 
their breaking. It is this latter idea that we shall pursue here. We are strongly 
motivated by the laboratory experiments of Koop (1981 ; see especially figure 22)  and 
Koop & McGee (1986; see especially figure 14), which shows the onset of breaking in 
short waves induced by the motion of shear flow over topography, as well as by other 
experiments of wave intensification in accelerating shear flows a t  lower Reynolds 
number (Thorpe 1984). 

Our conceptual model of the mixing is thus one in which large waves interact with 
topography, producing small-scale waves which are then forced to break as they are 
distorted by the large-scale modulations. 

3.2. Waves generated by interaction of the long wave with bottom topography 
We assume, for simplicity, that the near-bottom long waves like those observed on 
the Porcupine Bank are dominated by a single-frequency component. We envisage 
a situation in which, although the total long-wave field near the slope may more 
exactly be described by the superposition of an incident and a reflected wave, 
conditions are close to  critical so that the amplitude of the reflected wave is much 
greater than that of the incident wave, and the motion and density are adequately 
accounted for by the reflected wave alone. (The field of density and motion within 
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FIGURE 2. Shadowgraph of the laboratory experiment. For easy comparison with the theory, the 
negative has been printed back to front so that the long internal waves appear to approach the 
slope (to which are fixed square horizontal bars separated at 1.9 cm intervals) from the left. They 
produce a flow over the bars which generate the short waves which can be seen at A, B and C. 

the incident and reflected waves cannot be described simply by their superposition, 
since although each may be an exact solution of the equation of motion, they 
interact ; see Thorpe (1987 a). A finite-amplitude formulation of the wave field is thus 
not a simple matter.) We shall moreover ignore the restriction to the flow imposed 
by the presence of the slope, so that, even in its vicinity, the assumption of Z- 
independence, essential in formulating (15) and (17), is retained. These assumptions 
allow us to specify initial conditions for the short waves and to  illustrate the theory 
developed in 52.2. Our objective here is to  provide a qualitative description based on 
the understanding developed in earlier sections, which may help to  interpret 
observations. It would be appropriate to consider a t  a later stage the effect of 
approximating the long-wave field by a superposition of incident and reflected 
waves, whilst then acknowledging that finite-amplitude effects may not be 
adequately included. It should be recalled, however, that  in reality, with which we 
have ultimately to cope, there are other more serious effects that we have ignored 
such as the non-uniformity of the slope and density gradients, or the fact that the 
field of motion is broad-band. The shortcomings of the assumptions are discussed 
further in 55 when we come to the application of the results. 

We consider a plane source of short waves which is inclined on a slope a t  an angle 
6 to the horizontal with wavenumber k,. For illustration, an experiment was done in 
a 20.5 cm wide, 27.3 cm deep, channel filled with a stratified brine solution having a 
constant density gradient. Waves of the second vertical mode are generated at one 
end of the channel and propagate towards a uniform rigid slope a t  15" to the 
horizontal on which lies a grid of horizontal square bars. The bars are 0.6 cm square 
and are at 1.9 cm centre-to-centre separation giving a wavenumber k, = 3.31 cm-l. 
(The grid was constructed for an experiment in which it is rapidly oscillated to 
produce turbulence, but in the present experiments i t  is held stationary.) 

Figure 2 shows a shadowgraph image taken shortly after the arrival of a train of 
internal waves with a = 150", coming from the left. The waves reflect up the slope 
as described by Cacchione & Wunsch (1974) and Thorpe & Haines (1987). The 
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incident wavelength is A, = 27.3 x cos 30” = 23.6 em, whilst the (dominant) reflected 
wavelength A, = A, sin (ct-S)/sin (a+6) = 8.6 em so that, for this wave, the bar 
spacing gives k ,  = 4.55K. 

Small-scale waves are generated by the flow over the bars. Those most clearly 
visible in the shadowgraph are at  A and B. These small-scale waves are generated as 
stationary waves on the plane with phase speed parallel to the slope and relative to 
the fluid 

where IT is the their intrinsic frequency and V is the local up-slope current produced 
by the large-scale wave. If the waves travel at an angle p to the horizontal then, by 
simple geometry, their wavenumber k is given by 

k =  kl 
sin(P-6)’ 

and, using the dispersion relation (9) to replace IT, 

N,2sin2P-Nisinpcosp+f2cos2P = k i  P. (27 ) 

V is taken as the local component of the long-wave current parallel to the slope ; 

V = - (AC/sina) cosZt cos (a-6). 

Using the earlier parameterization, (27) can be rewritten as a quadratic in tanp: 

(1 -4-q) tan2p+ 4 tan a tan P+ ( A  tan2 a-q) = 0, (28) 

where q =  # 2 ~ ~ ~ 2 ( a - S ) y ~ ( l + A ) / ~ ~ ~ 2 ~ ,  y1 = k , /K .  

Given values of yI, the ratio of the length of the long wave to the wavelength of the 
slope topography, and of q5 = go, it is now possible to solve this quadratic and find 
real values (when they exist) of p = Po which satisfy the condition that the phase 
speed of the waves opposes the direction of V and their group velocity is 
appropriately directed upwards away from the source plane. The values of Po are then 
restricted in x < Po < $r for g50 > 0 (up-slope flow) and 

8. < Po < x-S or 2 x - S  < Po < 2x 

for qbo < 0 (down-slope flow) with $x < a < IT, as shown in figure 3 (a ,  b ) .  These values 
of q50, Po and yo (given by yo = yl/sin ( p o - S )  from equation (26)), are now used as the 
initial values to determine the constants in (20)-(22), and the analysis developed in 
52.2 determines the phase configuration of the short waves within the long-wave 
field. 

Since u has a bounded range of values, there is only a limited range of values V for 
which solutions of (27) are possible ; waves are thus generated only in particular parts 
of the ‘ebb’ and ‘flood’ cycle of the long wave. There are indeed discrete generation 
periods on either side of ‘slack water’ (V = 0) which may be reached either in an 
increasing or decreasing net flow. 

The distance that waves travel away from the slope, d ,  may be estimated by 
calculating 

d = l c g , d t  

(where t is the time from the moment of their generation and cgl is the component of 
group velocity of the waves normal to the slope). This may be transformed to an 
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FIGURE 3. Generation of short waves with phase velocity c and group velocity c, by flow over the 
sinusoidal slope: (a) up-slope flow 4 > 0; ( b )  down-slope flow 4 < 0, with waves possible in two 
quadrants; (c) shows how B is measured. Here waves with $n < /3 < 2n are being advected by an 
up-slope mean flow exceeding the down-slope component of phase speed (see $5) .  

integral over q5 by noting that the phase position of the short waves in the long wave 
changes by K(c - c g X )  dt in time dt : 

dq5 = AM (sin=) K(c - c g x )  dt 

so that (29) 

where the sign is chosen so that d increases for small departures of q5 from q50 ( *  1.e. so 
that initially waves propagate away from the slope). In practice the integral was 
estimated by a finite-difference summation. 

4. Results 
The results are presented as a series of graphs in the (4, pj-space, showing first the 

orientation of waves p as a function of q5 = r cos 8 which, since @ = 1 -NE/Nt,  is a 
measure of the variation of static stability in the long wave as the phase, 8, changes. 

We have chosen r (=AM) as 0.8, a large value which, however, corresponds to 
those estimated both for the waves in the laboratory experiments and the largest 
waves observed off the Porcupine Bank. 
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Figures 4 and 5 use values appropriate to the Porcupine Bank. We take CL = 174", 
6 = 3" and A = 0.9, corresponding to f / N ,  = 0.1. Equation (10) then shows that the 
short-wave disturbances are stable. The minimum Richardson number in the long 
wave, J = 0.34 > 9 and the maximum wave steepness (from (7)) is 22.8". The 
wavelength of the long waves is about 1000 m, but an appropriate value of y1 is not 
well defined by the observations. We have taken the wavelength of the bottom 
topography as 250 m and 125 m (giving y1 = 4 and 8 respectively) for illustration. 

Figure 4 ( a )  shows the variation o f p  with $ for y1 = 4. Waves are generated at the 
points marked by circles in either an increasing or decreasing up-slope flow (# > 0, 
and increasing or decreasing), or in an increasing or decreasing down-slope flow 
($ < 0, and decreasing or increasing, respectively), and are rotated in the changing 
shear and density field of the long wave. Waves generated during the periods of up- 
slope flow ($, > O , p ,  > x) rotate clockwise for increasing $, or anticlockwise 
(p decreasing to near n ; waves with near-horizontai phase surfaces) as q3 decreases. 
Waves generated in the down-slope flow (9, < 0,/3, < x) are similarly rotated, but 
those carried below /3 = &x may propagate into a 'caustic' zone where their group 
speed matches that of the long wave. As shown in figure 4(b), their amplitude 
increases considerably as the caustic is approached. Considerable amplification is 
found in the waves carried towards $ = 0.8, especially those generated during the up- 
slope flow (/3 > x). We do not, however, find that these decrease the stability of the 
flow by significantly enhancing the shear. So as to indicate the effect of the shear 
produced by the short waves, figure 4 (c) shows contours of a ratio R; = J'/J,, where 
J' is a local minimum-gradient Richardson number induced by the short waves and 
J, is its value at  (/30,$o). Here J' is defined as the square of the ratio of the local 
buoyancy frequency to the y-component of the vorticity induced by the short waves. 
(An estimate of the local Richardson number based on the total vorticity of the flow 
- long and short waves together - requires a specification of the relative amplitudes 
of waves.) The Richardson number is most reduced by waves approaching /3 = 0, x 
or 2n, where their wavelength becomes small (y  large, see figure 4 4 ,  or near the 
caustic. The condition that y should be large is not well satisfied for all the waves, 
although y > 3 everywhere. The condition y 9 1 is, however, better satisfied for 
y1 = 8, shown in figure 5.  The same general features can be seen, especially the large 
amplitudes reached near q5 = 0.8, for waves generated in the up-slope flow (figure 5b)  
and the small values of R; near ~3 = 0, x and 2n (figure 5 c ) ,  with the exception that 
no caustic develops and all waves survive throughout the range of #. Since $ is scaled 
with r ( = A M ) ,  results for smaller values of the long-wave amplitude, A ,  can be 
deduced simply by using the figures 4 and 5 with a revised maximum value of $. It 
may hence be seen, for example, that no caustic will be encountered for waves with 
y1 = 4 provided that r < 0.46. Using (29) we find that waves approaching the caustic 
in figure 4(a) have typically propagated a distance, d ,  of about 25 m off the seabed, 
whilst those formed in the up-slope flow (#, > 0) have travelled some 20 m by the 
time they arrive at  $ = 0.8. 

Figure 6 applies to values appropriate to the laboratory experiments, namely a = 
150°, 6 = 15", y1 = 4.55 and A = 0 (since f = 0). The maximum isopycnal slope is 
(from (7)) 66.5", and J = 0.62, >+. Conditions of 'instability ', (lo), are possible within 
the ranges of q5 and /3 shown as shaded areas in figure 6. No evidence is found that 
caustics are encountered by waves generated by the grid, assuming that the 
disturbances produced can accurately be described as waves with an up-slope 
wavelength equal to the bar spacing. Waves produced during the up-slope flow 
(q5, > 0, Po > x) may promote instability as they reach /3 = n as q5 decreases below zero 
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FIGURE 4. Propagation of short internal waves with local orientation B through a long wave given 
by @ = AMcos8. The long wave travels at angle u = 174" to the vertical (see figure l ) ,  and 
f / N o  = 0.1. The short waves are generated by the current produced by the long wave on a slope 
inclined a t  an angle 6 = 3' to the horizontal with a wavelength which is 0.25 times that of the long 
wave (yl = 4). (a) The variation of B with @. The short waves are generated at  the points marked 
by circles. The curve labelled 'caustic' marks the locus of points where the group velocity of the 
short waves matches the phase speed of the long wave. (b) Contours of a/ao, the amplification factor 
of the short waves. (c) Contours of R;, a measure of the local short-wave-induced Richardson 
number. (d) Contours of 7, the ratio of the long wave to short wave length. 
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waves are unstable. 
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(on a downward flow; figure 6a) .  From (9) it  appears that  the growth rate of the 
instability is unlikely to be large. The waves are not significantly amplified as they 
approach the unstable region (figure 5b). The greatest amplification occurs for q5 near 
0.8 and /3 near ~ T C ,  or where ~ T C  < p < TC, with amplification factors exceeding 4 for 
145' < /3 < 180". Large values also occur near /3 = ~ T C ,  where R; (figure 6,) is also small. 
Near (p = TC, q5 < 0) and (p = 2n, q5 > 0), R; is large since the wave shear becomes 
small, having linear dependence on u which approaches zero near the stability 
boundary. The distance of propagation away from the slope in the up-slope flow for 
waves formed with < 0, decreases as increases from -0.16 to  -0.04, Kd 
decreasing from 0.08 to 0.003. Kd reaches 0.18 for waves generated a t  = 0.08 
which propagate to q5 = 0.8. 

5. Discussion 
The orientation, p, of the small-scale waves at A (figure 2) lies between 125" and 

165", the most intense waves having ,!3 near 150°, whilst those a t  B have an 
orientation near 360'. These are consistent with the orientations of waves predicted 
to have the greatest amplitude (figure 6 b ) .  Both types of waves can be detected a t  
C where the flow is up-slope. 

Waves a t  A have a length of about 0.8 cm (y  = 11) whilst those a t  B have a length 
of 0.4 cm ( y  = 22), somewhat less than those the waves predicted in figure 6 to have 
the largest amplitude. However, within about one-quarter of the long-wave period, 
the short waves can be detected some 2.5 cm from the grid, giving Kd w 0.65, in 
excess of the values predicted in $4. It seems unlikely that the waves with near- 
horizontal phase lines ( p  near 0, TC or ~ T C )  may contribute to mixing since R; is large 
(see figure 6c) ,  and indeed no mixing appears to be associated with these waves in the 
experiments. The effect of viscosity on these very small (and hence low-Reynolds- 
number) waves may both suppress them (leading to the loss of waves with large y )  
and reduce any tendency for them to promote turbulence. The near-vertical waves 
predicted to have large amplitude (figure 6 b ,  p near ~ T C ,  q5 = 0.8) are not observed. It 
must be recalled, however, that the shadowgraph is sensitive to gradients in 
refractive index, and that the magnitude of the second derivative of density will 
provide a better indication of the presence of waves. This will be large if both the 
wave amplitude and the square of the wavenumber is large. Whilst a/ao is predicted 
to be fairly large near p = ~ T C  (figure 66), y is not particularly large (figure 6 4 ,  and 
it seems likely that for this reason the waves here are not detectable. 

We set out in $3.1 to provide a plausible explanation of the fine-scale distortion of 
the density field during certain parts of the M, baroclinic tidal cycle on the slope of 
the Porcupine Bank. Whilst some of the predictions of the theory have been verified 
in the simple laboratory experiment, a direct comparison with the measurements in 
the ocean is not possible because of the absence of information about the scale of 
variation of the bottom topography. The variation in the amplitude of the 
fluctuations during the tidal cycle of 10-12 m, their phase relationship with the M, 
tide, and the scale of separation of the layers (2&50 m) in comparison with the M, 
wavelength (about 1000 m), giving y = 20 to 50, are, however, reasonably consistent 
with the predictions in figures 4 and 5 for the up-slope flow near q5 = 0.8. It should 
be noticed that these waves have ~ T C  < p < 2n, so they have an upward phase speed 
and a downward group velocity, both relative to the fluid. Their phase configuration 
is, however, such that, as they are advected by the long-wave flow, a downward 
phase propagation would be observed at a fixed position (see figure 3c) .  Although 
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waves may be large near a caustic (e.g. as in figure 4), the long-wave flow here is 
down-slope (# < 0) whereas the observed waves occur primarily during phases of up- 
slope flow. Possibly the conditions are closer to those with y1 = 8 (figure 5 )  when 
there is no caustic. As was found in the experiments, the distance from the slope a t  
which short internal waves were observed (up to 82m off the Porcupine Bank) 
exceeds that predicted (only some 25 m), and this points to shortcomings of the 
theory. 

One severe approximation is that the short waves in $2.2 are supposed to be of 
small amplitude. Baines (1971 a) in particular has pointed to the fact that ‘linearized 
theory, although instructive and quite probably very useful, is really on the fringes 
of the phenomenon’, in the sense that nonlinear effects are likely to be important. 
The considerable amplifications of waves predicted in figures 4-6 is an indication that 
this is so. In  considering an internal wave flowing over sloping sinusoidal topography 
Baines found that two new waves were generated by reflection having sum and 
difference wavenumbers of what we have called the long wave and the bottom 
topography. The long-wave assumption made here implies that the only waves 
generated are those that are locally ‘standing’ in the current produced by the long 
wave on the slope, and that these have an along-slope wavenumber identical to that 
of the topography. Two new wave packets are indeed formed (as in figure 2), but with 
varying Po depending on $o. We have neglected the currents associated with the 
barotropic component of the M, tide as well as the mean flow, and the effects of 
along-slope topography and the internal waves which it may cause. These are likely 
to be important, and should be considered in further studies which will require 
careful use of the dispersion relation (see the Appendix) and evaluation of wave 
energy. Whilst we have not demonstrated that the descending layered structure seen 
in the high-resolution measurement off the Porcupine Bank is indeed produced locally 
as a consequence of the baroclinic tidal flow over topography, we have shown that 
small-scale topography can play an important role in promoting conditions for 
strong wave-wave interactions a t  ocean boundaries. 

The processes dominating ocean boundary mixing, those which must be accounted 
for in deciding whether it is of basin-wide importance, are far from clear. They 
probably depend on local topography, currents, atmospheric forcing and strati- 
fication, and merit a far more intensive and detailed study than has yet been 
attempted. Several processes involving internal waves are now known, reflection a t  
near-critical angles, incident and reflected wave interaction at  certain bottom slopes, 
and the wave-topography interactions and subsequent wave distortion described 
here. In  practice other wave effects, such as parametric instability and slow 
modulation of internal waves by larger-scale slope and Kelvin waves, may have to 
be accounted for. All we have done is to point to a process that may, or may not, 
contribute significantly but which appears to account for some of the observations. 

Mr Martin White made the laboratory experiment and measurements described in 
$03.2 and 5, and provided figure 2. I am most grateful for his cooperation. 

Appendix. Internal waves with a wavenumber in the y-direction 
A solution of the linearized equation of motion with linear density gradients in the 

x- and z-directions may be found proportional to expi(Zx+my+nz-d) with a 
dispersion relation (corresponding to (8)) of the form 

a3(Z2 + m2 +n2) = rr[(Z2 + m2)N:  -Id: + n2f -2V;fmn. 

14-2 
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In general, this has imaginary roots corresponding to growing disturbances. For 
example, in the case 1 = 0, the short waves described by this relation have a 
wavenumber a t  right angles to that of the long wave, and writing CT = ia' and 
t a n p  = m/n we find 

~ ' 3 + ~ ' ( N ~ s i n 2 p + f 2 ~ o s 2 P ) - N E  fsinpcosp = 0, 

which has one real root which is >0 if NE f sinpcosp > 0, giving an unstable, 
exponentially growing, solution. 
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